Technical Literature

DROPLET SEPARATION
1 Introduction

Gas and vapour streams are very important in chemical process technology. Different process steps necessitate generation, cleaning and separation of this streams. An enrichment of gas streams with liquids can be reached both through mechanical or thermal droplet generation - as e.g. in scrubbers and absorption columns - as well as through physical-chemical reactions (condensation). Certain process runs then require a separation of liquid portions from the gas or vapour stream. Different systems are used depending on liquid amount, droplet size and required purity. Beneath cyclones and impact plates mainly droplet separators made of knitted wire mesh are employed. With little expenditure of energy (low pressure drop) finest droplets with diameters of nearly 1 μm can be separated and efficiencies up to 99.9 % can be achieved.

Therefore separation problems with gas-liquid-separation are solved economically and cost-saving.

2 Fundamentals

A knitted wire mesh droplet separator is an industrial instrumentation which retains droplets carried by a gas or vapour stream, i.e. which effects a phase separation between gas and liquid stream. Droplet separators are predominantly used for exhaust air decontamination. Besides liquid droplets carried in process gas streams have to be separated, too, as they could cause damage on the instrumentation due to corrosion or erosion or due to depositing, caking and product contamination.

The efficiency of a droplet separator can be characterized with its fraction efficiency curve. The required expenditure of the separation is crucially governed by the feed droplet spectrum and the specified size limit of the droplets.

2.1 Droplet Size

The size of the droplets decisively depends on their kind of origin and their prehistory. Two principal mechanisms are responsible for their formation: mechanical generation as well as condensation.

A rough distinction of the droplet size can be made to the effect, that droplets bigger than 10 μm are called spray and smaller ones are called mist or aerosoles. Spray is mainly formed when liquids are atomized and the droplet spectrum is the finer the more energy is put into the atomization process.

![Image](https://example.com/droplet_separator_apps.png)

Fig. 1: Applications for separators and characteristic particle sizes.

Aerosoles are mainly generated by condensation of saturated steam and occur as mist in chemical reactions of gas mixtures, e.g. during the formation of liquid sulphuric acid through gaseous SO₃ and H₂O.

Beneath the formation of the droplets also the physical properties of the fluids are very important. A low surface tension favours the formation of small droplets, a high viscosity on the other hand favours the formation of large droplets.
The liquid droplets in a gas flow normally have different sizes. The distribution of the droplet sizes is similar to the normal distribution by Gauss.

2.2 Separation Mechanisms

The separation of droplets bigger than 30 µm normally causes no problems, as an inertia separation can easily be carried out due to the relatively large mass of drops. Therefore the application of RHODIUS knitted wire mesh droplet separators predominantly yields droplet size ranges smaller than 30 µm.

In this droplet size range and a liquid load of about 1 - 5 weight-% the disperse phase follows the streamlines, so that the gas flow itself is not influenced.

The separation of liquid droplets is based on the effect, that the particles can not follow the streamlines of the gas when they hit an obstacle and stick to a periphery.

In principle three separation mechanisms can be distinguished, where the limits between the single mechanisms are not defined exactly. The separation always has to be seen as the sum of single effects.

2.2.1 Separation by Inertia

In Fig. 2 separation by inertia is shown schematically.

Every single wire in a knitted wire mesh droplet separator is an obstacle in the gas flow, therefore a deviation of the streamlines takes place. Entrained droplets can not follow this deviation due to their inertia and hit the obstacle. This effect is mainly relevant for droplets bigger than 10 µm.

At the wires the single droplets grow together (coalesce) to bigger drops, then they form a liquid film on the wire surface and fall down due to gravity where the liquid is drawn off. The efficiency of the droplet separation increases with an increasing number of deviations.

2.2.2 Separation by Interception

The separation by interception is significantly important, as soon as the diameter of a droplet is relatively large compared to the diameter of a fibre (wire).

With respect to the direction of the gas flow the interception thus occurs in the boundary zone of the fibre. The separation of droplets by using knitted wire mesh is substantially affected by this interception, in addition to the inertia.

2.2.3 Separation by Diffusion

For droplets of submicron size separation by inertia as well as the effect of interception become negligible. Droplets smaller than 1 µm are separated by the Brownian movement. This is a continuous stochastic movement of particles which is caused by collisions with gas molecules. This particle movement increases with decreasing particle size. A particle with a diameter of 0.1 µm is subject to about 5 times the Brownian movement of a particle with a diameter of 1 µm.

The probability of the particles to collide with a fibre and to be separated rises with increasing Brownian movement. This separation process is called diffusive
separation which is shown in Fig. 3 schematically.

Fig. 3: Diffusive separation

A presentation of diffusive and inertia separation dependant on gas velocity and droplet size is shown in Fig. 4.

While separation by inertia increases with increasing droplet size and gas velocity, the influence of diffusive separation decreases with respect to these parameters. There is a transitional region (0.2 - 0.7 μm) in which the separation efficiency reaches a minimum. In this range the effect of interception is predominant and therefore high efficiencies can be achieved with knitted wire mesh droplet separators.

Fig. 4: Effect of separation mechanisms on the efficiency.

3 Design of Droplet Separators

Knitted wire mesh droplet separators for gas-liquid-separation are designed computer aided. The optimum calculation yields a complete separation of the liquid phase from the gas flow. Therefore the following parameters have to be taken into account.

- gas flow velocity
- permissible pressure drop
- required efficiency
- liquid amount to be separated

RHODIUS produces the appropriate droplet separator for every special application. For this purpose a large variety of materials is available to facilitate manufacturing to order. A selection of RHODIUS standard droplet separators is shown on page 9.

3.1 Gas Flow Velocity

The maximum gas flow velocity refers to that operating point of the droplet separator where the knitted wire mesh package is flooded and a liquid entrainment of mostly agglomerated drops occurs. Therefore the operating point has to be below the flooding point.

For calculating the maximum gas flow velocity u_{max} a variety of parameters have to be taken into account, e.g. gas and liquid density and the surface tension of the liquid to be separated.

The following simplified formula can be used:

$$ u_{\text{max}} = K \cdot \sqrt{\frac{\rho_{\text{FL}} - \rho_{G}}{\rho_{G}}} $$

where:

- u_{max} [m/s] maximum gas flow velocity
- ρ_{FL} [kg/m3] liquid density
- ρ_{G} [kg/m3] gas density
- K [-] constant: 0.04 - 0.15
The maximum permissible velocity excludes the formation of secondary drops due to impingement on the fibres and avoids flooding of the knitted wire mesh package. The design velocity is about \(0.75 \cdot u_{\text{max}}\).

3.2 Flooding Point

The determination of the flooding limit of droplet separators has to be taken into account in the stage of design in order to ensure faultless function of the droplet separator. In Fig. 5 the design curve of knitted wire mesh as well as its flooding limit is shown [1].

![Calculation diagram for designing knitted wire mesh droplet separators](Image)

Fig. 5: Calculation diagram for designing knitted wire mesh droplet separators

where:

\[
X = \frac{L}{G} \cdot \sqrt{\frac{\rho_G}{\rho_L}}
\]

\[
Y = \frac{u^2 \cdot a \cdot \rho_G \cdot (\mu_L)^{0.2}}{g \cdot \varepsilon^3 \cdot \rho_L}
\]

- \(L\) [kg/h] liquid flow rate
- \(G\) [kg/h] gas flow rate
- \(\rho_L\) [kg/m³] liquid density
- \(\rho_G\) [kg/m³] gas density
- \(u\) [m/s] velocity across an unobstructed cross section
- \(a\) [m²/m³] surface area of the knitted wire mesh package
- \(\mu_L\) [cP] viscosity of the liquid
- \(g\) [m/s²] acceleration due to gravity
- \(\varepsilon\) [-] porosity

3.3 Pressure Drop

The pressure drop of knitted wire mesh droplet separators is very low due to the large free volumes even at higher velocities. It rises almost proportional with the thickness of the package and acts nearly proportional to its density (with the same wire diameter and knitted wire mesh specification). Liquid load, viscosity, wetting behaviour of the liquid, as well as the contamination level of the gas stream (solid particles) have a strong influence on the pressure drop.

Saemundsson gives a theoretical pressure drop calculation for pouring knitted wire mesh [2]. This relation is valid for dry packages and takes all relevant parameters of different knitted wire mesh specifications into account (e.g. wire diameter and porosity). The calculation of the pressure loss coefficient was modified through the empirical formulations \(g\) and \(f\). This new equation confirms the measured pressure drops (dry measurements) of stainless steel types relatively exact shown on page 11/12.

This relation is:

\[
\Delta p = \zeta \cdot \frac{H \cdot \rho_L}{2R_h} \cdot \frac{u^2}{(1-\alpha)^2}
\]

with:

\[
R_h = \frac{1 - \alpha \cdot D_f}{\alpha \cdot 4} \quad \text{hydraulic radius}
\]

\[
\zeta = \frac{g}{Re} + \frac{f}{Re^{0.2}} \quad \text{pressure loss coefficient}
\]

\[
Re = \frac{u}{1 - \alpha} \cdot 4 \cdot R_h \cdot \frac{\rho_L}{\mu_L} \quad \text{Reynolds' number}
\]

where are:

\[
g = -1.56 \cdot p + 771.2
\]

\[
f = -0.0038 \cdot p + 2.72
\]

for \(p \leq 300\).
D [m] wire diameter
H [m] thickness of the packing
\(\alpha \) [-] packing density \((1-\varepsilon)\)
\(\mu \) [Pas] dynamic viscosity
\(\rho \) [kg/m\(^3\)] gas density

Index:
L referring to gas (air)
F referring to wire (fibre)

3.4 Efficiency

Below the flooding limit efficiency increases with increasing gas flow velocity. At the same time the pressure drop rises square what causes higher investments and essentially higher operating costs. Therefore each plant operator has to find out the optimum point between high separation efficiency and economic efficiency. The evaluation will turn out in favour of efficiency or low operating costs depending on the kind of application.

Proper design of the RHODIUS droplet separators yields separation efficiencies up to 99.9 %. Separation efficiencies always have to be seen in connection with the size limit of the droplets. Therefore RHODIUS always specifies separation efficiencies with the corresponding size limit, e.g. efficiency 99.9 % for droplets \(\geq 5 \, \mu \text{m} \). The efficiency curves shown on page 15 ff. are based on the theoretical calculation of Bürkholz [1] and depend on the measured pressure drops.

4 Agglomeration

In order to achieve high efficiencies for droplet spectrums in the range of a few microns either an increase of the gas flow velocity or the use of a two-stage separator is necessary. This construction ensures high operational flexibility at a comparatively low pressure drop.

The first stage acts as an agglomerator. Increasing the gas flow velocity (e.g. by reducing the gas flow area) as well as choosing appropriate packages ensures that the packing will be flooded. In this process it has to be taken into account that the stage of coalescence is run with sufficient liquid. If necessary, a part of the separated liquid can be sprayed before the first stage.

In the first stage an agglomeration of very small droplets into larger ones takes place, and these are subsequently separated without any problems in a second stage that is run with lower velocity.

An additional - often desirable - effect comes with the use of an agglomerator, namely the liquid column forming in the package facilitates a post-absorption of gaseous hazardous substances.

5 Construction

The design of the droplet separator according to the required operational conditions leads to an exact definition of the knitted wire mesh type. However, additional manufacturing details must be determined. Depending on the specific requirement, the knitted wire mesh may be finished in the form of a roll (wrapped roll) or as a combination of layers (knitted wire mesh mats). The cutting edges stemming from the fabrication of a package are provided with a framing. In order to ensure an optimum press fit with the installation, the droplet separator is manufactured in oversize relative to the inside dimensions of the vessel.

The data sheets in the appendix show further details with regard to installation, grids and support constructions as well as subdivision of the droplet separators into different segments.

A great variety of materials and an own engine and tool construction enables RHODIUS to match her knitted wire mesh droplet separators to almost every application.
The orders of magnitude for droplet separators range from small pressed parts of a few centimeters in diameter and thickness to constructions with diameters up to 10 metres.

Please notice, however, that RHODIUS does not produce vessels or complete solutions.

6 Assembly instructions

The single segments of the droplet separator should be arranged according to the presentation on page 19 or the attached detailed drawing, respectively. Before installing the segments you should check which manner of fastening is prescribed. Some possible fastening methods are shown on page 27.

In case of fastening with stud bolts (see page 27 figure C) these have to be fixed to the supporting structure according to the drawing before putting these segments in place.

Installation of the single segments is carried out crosswise to the support bars. The outer segments are installed first then the inner ones follow, i.e. the middle segment is the one to be installed at last. As for sealing purposes the single segments are oversized they have to be laid tightly together. For pushing in the last segment metal plates are used which are laid left and right to the segments already installed. Then you have to remove the metal plates and check the sealing effect of the segments.

Now the segments can be fastened to the supporting structure as prescribed.

7 Maintenance

Due to their high porosity of 89 to 99 % droplet separators are relatively insensitive to soiling. Under normal operating conditions with sufficient high liquid flow the droplet separator cleans automatically by itself. Solids are washed out by the liquid flow. In case of less liquid flow and high solid concentration it is advisable to install a scrubber in front of the knitted wire mesh droplet separator.

However, in the event of deposits or caking in the knitted wire mesh package, it can be cleaned by jets of water, vapour, or diluted bases or acids. This treatment must be chemically compatible with the materials involved.

The cleaning may be done within the vessel with an equipment already installed (counter stream rinsing equipment) or externally. For designing the cleaning equipment the kind and quantity of the pollution has to be taken into account.

RHODIUS suggests the following standard values:

- quantity of water: 20-80 l/m²min
- jetting time: 5-10 min
- distance of the nozzles 300-500 mm
- distance nozzles - wire mesh: 300-500 mm
- jetting admission pressure: approx. 3 bar

8 Applications

From the many possible applications of RHODIUS droplet separators a few may be listed here:

- **Evaporators**
 To avoid entrainment and to improve product purity
- **Absorption- and destillation columns**
 Increase of flow rates and product purity at the same time
- **Vacuum- and compressed air systems**
 Separation of the condensate generated
- **Oil mist separator**
 Waste air abatement and recovery of oils and lubricants
• Fat filters / fatty acid systems
 Separation of fatty acids

• Paint shops
 Separation of lacquer particles

• Sulphuric acid plants
 Separation of sulphuric acid mist

• Air conditioning and waste air systems
 Separation of liquid and solid particles

• Cooling towers
 Retaining aerosoles

• Seawater desalination plants
 see evaporators

9 Literature

[1] Bürkholz, Armin
 Droplet Separation
 VCH-Verlag, Weinheim, 1989

[2] Saemundsson, Helgi B.
 Abscheidung von Öltropfen aus strömender Luft mit Draht- gestrickpaketen
 Verfahrenstechnik 2, Nr. 11 (1968), S. 480-486

[3] Bulag, S.
 Hochwirksame Tropfenabscheider bei der Rauchgasreinigung
 Chemische Industrie, Jan. 1983

 Reinigung von Abgasen
 Vogel Verlag, Würzburg, 1990

 Abscheidung von Nebeln, Sprays und löslichen Feststoffen aus Gasströmen
 CAV, Mai 1979
10 Materials and Sizes

<table>
<thead>
<tr>
<th>Metals</th>
<th>Synthetics</th>
<th>Glas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• All usual stainless and acid resistant steels (SS)</td>
<td>• PE (Polyethylene)</td>
<td>• Glas staple fibre (GSF)</td>
</tr>
<tr>
<td>• Special materials:</td>
<td>• PP (Polypropylen)</td>
<td>• Glas silk</td>
</tr>
<tr>
<td>- Monel *</td>
<td>• PVC (Polyvinylchlorid)</td>
<td></td>
</tr>
<tr>
<td>- Inconel *</td>
<td>• PVDF (Polyvinylidenfluorid)</td>
<td></td>
</tr>
<tr>
<td>- Incoloy *</td>
<td>• ETFE (modif. PTFE)*</td>
<td></td>
</tr>
<tr>
<td>- Titanium</td>
<td>• PES (Polyester)</td>
<td></td>
</tr>
<tr>
<td>- Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Brass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Galvanized steel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Trade Mark: Hostaflon (HM)

<table>
<thead>
<tr>
<th>Wire:</th>
<th>Monofilament:</th>
<th>Single fibre:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 0,05 - 0,50 mm</td>
<td>Ø 0,22 - 0,60 mm</td>
<td>Ø ca. 0,01 mm</td>
</tr>
<tr>
<td>Standard:</td>
<td>Standard:</td>
<td></td>
</tr>
<tr>
<td>Ø 0,12 / 0,28 mm</td>
<td>Ø 0,27 / 0,40 mm</td>
<td></td>
</tr>
</tbody>
</table>

Multifilaments of PP and PES

Droplet separator sizes:

- Diameter: any size in the range of [mm] bis [m].
- Thickness: any thickness at all. **Standard**: 25 mm, 50 mm, 100 mm, 150 mm, 200 mm

The contents of this documentation are based on the present knowledge of RHODIUS. They do not imply any guaranty of properties. (December 1995, rev. 2001)
Rhodius Standard Types

<table>
<thead>
<tr>
<th>Types</th>
<th>Density [kg/m³]</th>
<th>Density [lbs/ft³]</th>
<th>Surface [m²/m³]</th>
<th>Surface [ft²/ft³]</th>
<th>Porosity [%]</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHO-80-SS-0,28</td>
<td>80</td>
<td>5</td>
<td>145</td>
<td>44</td>
<td>99</td>
<td>High liquid amount</td>
</tr>
<tr>
<td>RHO-110-SS-0,28</td>
<td>110</td>
<td>7</td>
<td>200</td>
<td>61</td>
<td>98,6</td>
<td>High flow velocity</td>
</tr>
<tr>
<td>RHO-130-SS-0,28</td>
<td>130</td>
<td>8</td>
<td>236</td>
<td>72</td>
<td>98,3</td>
<td>Standard version</td>
</tr>
<tr>
<td>RHO-145-SS-0,28</td>
<td>145</td>
<td>9</td>
<td>265</td>
<td>80</td>
<td>98,1</td>
<td>Normal process conditions</td>
</tr>
<tr>
<td>RHO-175-SS-0,28</td>
<td>175</td>
<td>11</td>
<td>320</td>
<td>98</td>
<td>97,8</td>
<td></td>
</tr>
<tr>
<td>RHO-192-SS-0,28</td>
<td>192</td>
<td>12</td>
<td>350</td>
<td>107</td>
<td>97,5</td>
<td>High efficiency</td>
</tr>
<tr>
<td>RHO-240-SS-0,28</td>
<td>240</td>
<td>15</td>
<td>435</td>
<td>133</td>
<td>97</td>
<td>Oil mist separation</td>
</tr>
<tr>
<td>RHO-240-SS-0,14</td>
<td>240</td>
<td>15</td>
<td>868</td>
<td>265</td>
<td>97</td>
<td>Agglomeration</td>
</tr>
<tr>
<td>RHO-200-SS/GSF</td>
<td>200</td>
<td>12,5</td>
<td>5000</td>
<td>1520</td>
<td>94,8</td>
<td>High efficiency at smallest liquid drops</td>
</tr>
<tr>
<td>RHO-432-SS-0,12</td>
<td>432</td>
<td>27</td>
<td>1835</td>
<td>560</td>
<td>94,5</td>
<td></td>
</tr>
<tr>
<td>Synthetic types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHO-50-PP-0,40</td>
<td>50</td>
<td>3</td>
<td>550</td>
<td>170</td>
<td>94,5</td>
<td>Standard version</td>
</tr>
<tr>
<td>RHO-70-PP-0,40</td>
<td>70</td>
<td>4,4</td>
<td>770</td>
<td>235</td>
<td>92,3</td>
<td>Corrosive media</td>
</tr>
<tr>
<td>RHO-100-PP-0,40</td>
<td>100</td>
<td>6,2</td>
<td>1100</td>
<td>335</td>
<td>89,0</td>
<td>High efficiency</td>
</tr>
<tr>
<td>RHO-100-PP-0,22</td>
<td>100</td>
<td>6,2</td>
<td>2000</td>
<td>610</td>
<td>89,0</td>
<td>Acid mists</td>
</tr>
<tr>
<td>RHO-100-PVC-0,30</td>
<td>100</td>
<td>6,2</td>
<td>952</td>
<td>290</td>
<td>92,9</td>
<td>Highly corrosive media</td>
</tr>
<tr>
<td>RHO-80-PVDF-0,27</td>
<td>80</td>
<td>5</td>
<td>665</td>
<td>200</td>
<td>95,5</td>
<td>Highly corrosive media at high process temperatures</td>
</tr>
<tr>
<td>RHO-100-HM-0,27</td>
<td>100</td>
<td>6,2</td>
<td>870</td>
<td>265</td>
<td>94,2</td>
<td></td>
</tr>
</tbody>
</table>

* Theoretical data
Problem Description

Application

- **Flow direction**: □ vertical □ horizontal □

Existing dimensions [mm]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required efficiency [%]</td>
<td>Droplet size limit [μm]</td>
</tr>
</tbody>
</table>

Max. permissible pressure drop [mbar, Pa]

Calculation to

- □ existing dimensions □ max. efficiency

Operational Data

Operational pressure [bar absolute] Temperature [°C]

Gas / vapour density [kg/m³] or molecular weight

Flow rate [kg/h, Nm³/h, m³/h]

Kind and quantity of the liquid to be separated [kg/h]

<table>
<thead>
<tr>
<th>Liquid density [kg/m³]</th>
<th>Liquid viscosity [m Pa s/ c Poise]</th>
</tr>
</thead>
</table>

Construction

Required design

- □ square □ rectangular □ circular

- □ knitted wire mesh pad □ with grids

- □ with U-frame □ with welded mesh

- □ with expanded metal □

Material

<table>
<thead>
<tr>
<th>Company:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tel.:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fax:</th>
<th></th>
</tr>
</thead>
</table>
Pressure Drops

Metal Types

dry / 1 bar / 20 °C
Pressure Drops

Metal Types

System: air/water, 1 bar, 20 °C.
Pressure Drops

Synthetic Types

dry / 1 bar / 20 °C

![Graph showing pressure drops vs. air velocity for different synthetic types.](image-url)
Pressure Drops

Synthetic Types

System: air/water, 1 bar, 20 °C
Efficiency

Metal Types

Efficiency [%]

Droplet size [μm]

u = 2 m/s

■ RHO- 80-SS-0,28

↔ RHO-130-SS-0,28

▲ RHO-192-SS-0,28
Efficiency

Metal Types

Efficiency [%]

Droplet size [μm]

u = 3 m/s

- RHO-80-SS-0.28
- RHO-130-SS-0.28
- RHO-192-SS-0.28
Efficiency

Synthetic Types

Efficiency [%]

Droplet size [μm]

u = 1 m/s
- RHO-100-HM-0.27
- RHO-80-PP-0.4
- RHO-80-PP-0.22
Efficiency

Synthetic Types

u = 2 m/s

- RHO-100-HM-0,27
- RHO- 80-PP-0,4
- RHO- 80-PP-0,22
KNITTED WIRE MESH DROPLET SEPARATOR

Round design: 50mm - 10m
Standard section width 360mm - border sections are adjusted

RHO 1
50 - 500mm
1-piece

RHO 2
500 - 720mm
2-piece

RHO 3
720 - 1080mm
3-piece

RHO 4
1080 - 1440mm
4-piece

RHO 5
1440 - 1800mm
5-piece

RHO 6
1800 - 2160mm
6-piece

RHO 7
2160 - 2520mm
12-piece

RHO 8
2520 - 2880mm
14-piece

RHO 9
2880 - 3600mm
20-piece

RHO 10
>3600mm
Multi-piece
The given standard design is only a construction aid – deviant requests can of course, be produced, too.
The given standard design is only a construction aid – deviant requests can of course, be produced, too.
Standard–Design RHO 2 – 10

Metal–types multipiece

The given standard design is only a construction aid – deviant requests can of course, be produced, too.
The given standard design is only a construction aid – deviant requests can of course, be produced, too.
The given standard design is only a construction aid – deviant requests can of course, be produced, too.
The division of the droplet separators depends on a max. section width of 410mm.

The given standard design is only a construction aid – deviant requests can of course, be produced, too.
The given standard design is only a construction aid – deviant requests can of course, be produced, too.
Installation – Droplet Separator

Installation and fixing from below

Installation and fixing from above

[Diagram showing installation details]
Standard-Design
Knitted wire mesh with frame

Sheet thickness 1–2mm

A
B

Lining welded

Welded mesh

Optional with handle double-face, hinged

The given standard design is only a construction aid – deviant requests can of course, be produced, too.
Installation – Droplet Separator

$H_A \approx 1.4 \times D + H_{Separator} + d$, min. $0.4 \times D + 700$ (mm)

$H_B \approx 0.4 \times D$

$H_C \approx 0.4 \times D$

$H_D \approx 0.7 \times D$ (Min. thickness ca. 150mm) + $d/2$

$H_E \approx 0.3 \times D$ (Min. thickness ca. 150mm) + $d/2$

$H_{Separator}: 100 - 250$ mm incl. grids